Recognition of Cursive Texts Using Hamming Neural Nets

نویسنده

  • S. D. Katebi
چکیده

Hamming Neural networks are employed for cursive text character separation and recognition. The digitized image of the scanned text is first enhanced by applying simple contrast stretching algorithm. Image registration is then performed to eliminate the white margins. Lines are separated by rows of white pixels and the morphological components identified. The projection method in conjunction with histogram analysis is used to estimate the width of each character in a word. The word is approximately decomposed into its constituent characters. The Hamming net is used to identify thus separated characters, while supposing the included portions of the adjacent characters as noise. The property of the trained Hamming net, i.e., the associative feature for detecting the best matched patterns from the prototype in a mean square sense, is the basis for constructing the recognition algorithm. Illustrative examples are presented and it is shown that the proposed approach is fast and efficient to provide an on-line separation and classification system for cursive texts such as Persian (Farsi), Arabic, Urdu and English script.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Approaches for Cursive Languages Recognition: Machine and Hand Written Scripts and Texts

Three different approaches are considered in this paper to deal with the methods of Pattern Classification and Recognition. The main patterns considered are images representing the alphabet of cursive-scripts languages, particularly Arabic alphabet. The practical results of written scripts recognition led to the possibility of applying the main ideas and criteria to written and spoken texts and...

متن کامل

On-line recognition of cursive Korean characters using graph representation

The automatic recognition of cursive Korean characters is a di$cult problem, not only due to the multiple possible variations involved in the shapes of characters, but also because of the interconnections of neighboring graphemes within an individual character. This paper proposes a recognition method for Korean characters using graph representation. This method uses a time-delay neural network...

متن کامل

An Evolutionary Neural Learning Algorithm for Offline Cursive Handwriting Words with Hamming Network Lexicon

Original Word Image Rule Based Segmentation Character Resizing Recognition of Character using an ANN (trained with EALTS-BT) Lexicon Analyser Input Feature Extraction Output In this paper we incorporate a hybrid evolutionary method, which uses a combination of genetic algorithm and matrix based solution method such as QR factorization. A heuristic segmentation algorithm is initially used to ove...

متن کامل

A SVM-based cursive character recognizer

This paper presents a cursive character recognizer, a crucial module in any cursive word recognition system based on a segmentation and recognition approach. The character classification is achieved by using support vector machines (SVMs) and a neural gas. The neural gas is used to verify whether lower and upper case version of a certain letter can be joined in a single class or not. Once this ...

متن کامل

Enhancing Neural Confidence-based Segmentation for Cursive Handwriting Recognition

This paper proposes some directions for enhancing a neural network-based technique for automatically segmenting cursive handwriting. The technique fuses confidence values obtained from left and center character recognition outputs in addition to a Segmentation Point Validation output. Specifically, this paper describes the use of a recently proposed feature extraction technique (Modified Direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004